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ABSTRACT

A mechanism for the generation of seismic waves is postulated thatl'.
is based on the release of shear strain dislocations. A certain probabil-
ity of release of dislocations is also postulated. From these there are
deduced expressions f;or the frequency distribution of shocks, energy re-
leased, etc., that are in agreement with observations. It 1s shown that a
random superposition of pulses such as those released by individual dis-
locatioﬁs will form an accelerogram that has the appearance and properties
of recorded accelerograms. The relation between the maximum ground accel-
eration and the size of slip area i1s examined. It is concluded that the
existing recorded strong ground motion accelerograms are reliable samples
of possible strong ground motions.
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INTRCDUCTION

The usual type of California earthquake 1s associated with a
relative horizontal slipping of the twc faces of a fault which liee
essentially in a vertical plane. 4As a consequence of this slipping,
the surface of the ground experiences a severe wmotion in the neighbor-
hood of the fault during large earthquakes. This surface ground motion
can be measured, and for the rélatively small number of estrong ground
motions that have been recorded the maximum horizontal acceleration mea-
sured was 0.33 of gravity. For obvious reasons the accumulatibn of data
on strong ground motion is a slow process, so that 1t will be many years
before a sufficiently large body of observations is amassed to give a
reasonably complete picture of what can be expected in the way of de-
structive seismic motions. Analysis of the problem is rendered difficult
by the fact that it is not possible to make direct observations of the
mechanism that generates the seismic waves, for the usual California earth-
quake originates at a depth of approximately‘lo‘miles, although in some
large earthquakes the slipping on the fault has extended to the surface
of the ground. Although direct observations cannot be made, & mechanism
for the generation of the seismic waves can be deduced. This, of course,
must satisfy certain conditions. It must be physically self-consistent,
and the surface phenomens derived from it must agree with observations
of actual earthquakes. If it does this the theory may be used with
some confidence to investigate items that have not been measured as
yet. In particular it can be used to study what can be expected over
a large number of earthquakes. In view of the fact that there is incom-
plete knowledge of the physical properties of the earth's crust at depths
of 10 miles, it is not feasible to attempt to analyze the detailed be-
havior of the subsurface phenomena; however, assuminé average properties
and introducing simplifications it is possible to investigate average be-
havior. '

The essence of the present theory is a postulated mecharism of
slipping along a fault that will account for the strong motions observed
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at the surface of the ground. The mechanism of slipping can be pictured
as a releasing of shear dislocations. An example of a shear dislocation,
88 defined in this paper, is shown in Figures la and 1b. Consider an
indefinitely extended elastic material, in the interior of which there

is & plane crack with boundary 'a' as shown in Figure la. The two abutt-
ing faces of the crack have been given a lateral displacement relative to
each other as shown in Figure 1lb. In order to maintain this relative dise
placement there must exist equal and opposite shear stresses on the two -
faces. These shear stresses can exist only if friction forces can be de-

veloped and this requires that compressive stresses exist in the material.
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In a typieal dislocation the shear stresses on the faces of the disloca-
tion and in the adjacent material will be distributed in the manner shown
in Figures 2a and 2b. The precise form of the shear distribution will
depend upon the relative displacement of the two faces and the shape of
the dislocation. If the stressed dislocation suddenly snaps to the un-
stressed position stress waves will be propagated out from the disloca-
tion.

If a single shear dislocation were located in the earth's crust
and 1t were to release its stress suddenly it would generate an elemental
earthquake. Such elemental shocks have been recorded and in appearance
the seismogram is similar to one cycle of a sine wave followed by a
small osclllatory tall, as sketched in Figure 3. The pulse released by
a dislocation must be of this form for the displacement, velocity and
acceleration of a point on the surface of the ground must return to
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Figure 2a Figure 2b
Stress along & line perpendicular Stress along a line .in the plane
to the dislocation. of the dislocation.

zero after the pulse has passed. The reversed shear stresses outside of
the boundary of the dislocation, as shown in Figure 2b, are responsible

for the second loop of the pulse.

Oisplacetmernt

Figure

If a cluster of dislocations were spread over a surface, as indi-
cated in Figure 4, there would be formed a large crack with boundary A,
vhich may be called a composite dislocation. The shear stresses on the
faces of the composite dislocation, A, will vary over the area, depend-
ing upon the stresses of the incremental dislocations of which it is



formed and upon the manner of superpositlon. The stresses associated
with a shear dislocation in an indefinitely extended solid are self-
equilibrating so that an earthquake fault may be considered to be
formed by a planar distribution of shear dislocations, that is, these
form the crack, and superposed is a state of shear produced by relative
horizontal translation of separated points of the earth's crust. The
superimposed shear strain is relieved by the release of the disloca-
tions, Thelr action way be thought of as being similar in nature to
the so-called "friction chattering"” sometimes observed when the plane
faces of two bodies are rubbed together.

The shear stresses on the faces of a stressed dislocation are
in opposite directions on the two faces so that the shear stresses are
equal and opposite with respect to the plane of the dislocation. This

T “‘\\
)

4

./—-/‘

Antisymmetrical State of Stress

antisymmetrical state of stress is shown in the diagram. When the dis-
location 1s suddenly released, the strese waves generated will be anti-



symmetrical with respect to the plane of the dislocation. This means
that points on the plane of the dislocation will not undergo displace-
went during the passage of the stress waves. As a consequence of this
it can be expected that during an earthquake the surface ground motion
will be less intense along the plane of the fault than at relatively
short distances from it. If the earth's crust were homogeneous and iso=
tropic there would be no motion on the plane of the dislocation. Geologi-
cal inhomogeneities, wave reflections, etc., will tend to mask the'effect
but it can be expected that the surface intensity along the fault will be
less than would be obtained if the shear waves were symmetrical with re-
spect to the fault, Customary methods of extrapolating surface intensi- -
ties of ground motions assume that the disturbances originate in a
symmetrical fashion and it has happened that these methods indicate
greater intensities along the fault near the epicenter than are actually
observed.

The stresses and strains assoclated with a shear dislocation
may be computed in the following manner, The stress distribution pro-
duced by a force acting at & point in an indefinitely extended solid is

B -5/2
I - 8;%i:7)i'(l-2v)z(r2+zz) 3/2:3r22(r2+zz) ¢ }

1

X

P

-3/2

% =s;§-i:w{<1-av>z(r2+z2> / }
-3/2 -5/2
0; = 33?1-v) z(r2+z2) +323(r2+22) ‘}

-3/2 o -5/2
% ” - Ei%.'-' 0) {(1-zv)r(r2+zz) / +3r22(r%+2°) /}

2z
vhere P ie the force acting at the origin of the coordinate system in the
g-direction, x = r cos 6, y = r sin 0, and V is Poissons ratio for the
waterial. d;, 0; and d; are the normal stresses in the r, ¢, 2z direc-
tione, and T is the rz shear stress, Tro and 7;9 being zero. The

! 5. Timoshenko, Theory of Elasticity, McGraw-Eill Book Co., New York,

1934, pg. 321.
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partial derivative of the stresses with respect to x gives the stress dis-
tribution associated with a doublet of forces as shown in the accompanying
diagram. Each force of this doublet is the resultant shear on the face
of an infinitesimal dislocation of area dydz lying in the y-z plane at
the origin. For example, the shear stress Trz associated with the doub-

let is

’ 2 2 2

T. = B;(———‘P"_ {(1-2\1) 2 -2x -2y +
i 1-v) (x2+yz)m(x2+y2+zz)5/z

Along the x-axis, perpendicular to the plane of
the dislocation, 7, is equal to 'sz which
is given by

= Sl—2v2 1
sz hx(1-v) X3

s0 that the shear stregs decreases inversely as
the cube of the distance from the origin. The
stresses assoclated with a dislocation of finite
size are obtained by integrating the expressions
for the infinitesimal dislocation. Each of the
stresses for the infinitesimal dislocation is a
function of x, y, z of the form P f£(x,y,z) .
The appropriate integration is

[ﬁaf(x,y—a,z-a)dadb

where p 18 the intensity of shear stress on the
face of the dislocation at the point a,b, where

322( zz-l&xz-hyz

( X% +y

2y1/2

(x

T/2
2+y2+z2 7

F

8 is measured in thé x-direction and b is measured in the z-direction. The
integration is to extend over the area of the dislocation.
are prescribed over the faces of the dislocation and at a distance from the

dislocation the stresses will diminish inversely as the cube of the distance.

Thus the stresses



RELEASE OF DISLOCATIONS DURING AN EARTHQUAKE

If an earthquake fault is considered to be formed by a distribu-
tion of a large number of dislocations with a superposed state of shear,
then as the stresses are bullt up in the earth's crust eventually the
stress at one of the dislocations willl exceed the limiting stress and
that dislocation will snap. This will reduce the shear between the two
faces of that dislocation, but as can be seen from Figure 2b the release
of a dislocation will increase the shear stress on the adjacent disloca-
tions. This increase in stress may be sufficient to release an adjacent
dislocation. If & second dislocation snaps it in turn will increase the
stress on adjacent dislocations and thus trigger a third, etc. This
forms a chain reaction which may progress to cover a large area, A, of
relative slippage. The process 1s indicated schematically in a simpli-
fied form in Figure 5. The dislocation numbered 1 is the first to be
released, and this releases those marked 2. When these second disloca-
tions are released they increase the stress over the area formerly
occupied by number 1 and this area snaps a second time. Similar}y, when
those marked 3 are released they increase the stress and cause those
marked 2 to sn.ap a second time, which in turn causes 1 to snap a third
time. Actually, the dislocations will not snap in such an orderly manner
as here described but can be expected to snap in a rapid, darting, ran-
dom fashion, but the net result, that
is, the total relative slipping, will
be essentially as described. The
process of slipping along a fault
may thus be plctured as rapid re-
leases of dislocations over a
spreading area with repeated re-
leases occurring over the area un-
til a position of equilibrium is
reached. The stress waves released
by a disloecation will have relatively
high velociﬁ;l.ea of propagation but the Figure 5
actual velocity attained by a particle
on the face of a dislocation will be small.




THE MECHANISM OF RELEASE

To determine precisely when and where the individuel dislocations
are released during an earthquake would require a precise knowledge of
the state of stress along tbe fault, the properties of the material, etc.
This 1s clearly impossible to achiesve, however, the problem may be approach-
ed from a statistical point of view. That is, a probability mechanism can
be postulated that, although not describing precisely the release of each
individual dislocation, will describe the average properties of ensembles
of dislocations. Again, there is no way of deriving a precise specifica-
tion of the statistical problem, but this must be deduced from observa-
tions of actual earthquakes, a knowledge of the properties of rock, a
knowledge of stress distributions associated with shear dislocations of
specified type, etc. From such considerations the following mechanism is
postulated.

First, the average relative slip between the faces of a composite
dislocation of area A is taken to be proportional to the square root of A.
‘This statement is to be understood in a probability sense. That is, it is
not required that for every composite dislocation the average slip is pre-
cisely proportional to the square root of the ares of slip, but it is only

required that the deviations from this rule may be viewed as statistical
deviations about a mean and the statements refer to the relation between
the mean slip of all earthquakes of a specified area and that area.

The statement that the average slip is proportional to the square
root of the slip area implies that the areas are geometrically similar.
Actually this can be true omly for slip areas up to a certain size, for
the usual strong-motion California earthquakes originate at a 10 mile
depth and the extent of the slip area 1s bounded by the surface of the
ground. The growth of the slip area is also inhibited because at in-
creasing depths the physical properties of the rock approach those of a
material which flows plastically under applied stresses, and therefore
cannot maintain shear stresses of as great a magnitude as the material
nearer to the surface, although it undoubtedly can rupture in a brittle
manner under suddenly applied shear strains. It is presumed that slip
areas of increasing size will follow the geometry indicated in the
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disgram in which ell slip areas smaller than 'a' are geometrically similar.
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For areas sufficiently larger than 'a‘' it appears likely that the average
" 811p will be essentially proportional to the length instead of the square
root of the area. The larger slip areas are of such infréquent occurrence
that little data is available. Because of this, the following discussion
treats only slip areas of the first type and the remark; should properly
be modified where they pertain to the very large earthquakss.

Second, there is required a formulation of the probability of re-
lease of dislocations. The mechanism that controls the size of the slip
area is associaded with the distribution of static shear stress along the
fault. It i1s logical to assume that the distribution of shear stress
variee quite irregularly over the fault plane, that is, something like a
two dimensional, random, continuous function. The variation of stress
along a line lying in the fault plane would have an appearance similar to
the curve shown in the diagram below. As the state of shear strain builds

ub the stresses increase until one of the peaks reaches the failing point.
This region will then slip and the extent of the slip will be governed by
the region of low etress surrounding the peak, When a region such as B
reaches the failing point a relatively large area of slip will result.
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The state of stress over a rectangular area of fault with dimensions jl
by !2 can be expressed by

’.T=ZZCmsin%xsin$§y

and as the state of strain builds up the coefficlents Cmn Increase until a
slip occurs at which time there 1s a sudden change in the coefficients.

The relative displacement of fhe two faces of the fault from the unstressed
configuration will also be irregular, but will be much smoother than the
stress distribution, and will have an appearance similar to the following
dlagram. The relative displacement can also be expressed in a Fourier form

u=223msi.n5-’;xsinin—’-y

2

It seems ressonsble to assume that the an occur in such a way that the
frequency of slips of various areas 1s inversely proportional to the area.
That 1s, the expected number of slips having areas lying between A and A+dA
is proportionsal to %& » As will be seen, such a frequency distribution for
the areas agrees well with observations. It is possible, in principle, to
compute the detailed behavior of the coefficients Cmn and an require§ for
such a frequency distribution and this would give information on the prob-
able distribution of stress and strain along a fault.

Let the frequency distribution of slip areas A, be written

a
o 1
f=C0x =°x

where a8, is the lower limit of A. The total probability must equal wmity,
s0 that
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where Xy is the maximum possible value of x. The frequency distribution
of x is therefore

1 1
T % @

log x
o
It may be noted that there must be both an upper limit and a
lower limit for x, otherwise log ﬁ becomes infinite and the frequency
X

distribution does not exist. °

The mechanism postulated above does not describe the details of a
specific earthquake but it describes an average process that should agree
with the averages of observations. The mechanism is also a simplification
in that it does not include the effects of the variation of physical para-
meters in the earth's crust. In particular, the fact that with increas-
ing depth the physical properties vary from those of an essentially
linearly elastic solid to those of a material that deforms plastically
under slowly applied strains, is not included. This means that certain
relaxation processes that are undoubtedly operative are not considered.
Also, the mechanism excludes from consideration such shocks as may arise
from processes other than horizontal slipping along essentially vertical
fault planes.

MAGNITUDE AND FREQUENCY

From the viewpoint of the dislocation theory a natural measure of
an earthquake is the average slip occurring on the fault. Accordingly, a
logarithmic measure of the average slip is taken to define an earthquake,
that is, the measure M is related to the average slip by

M =

o |6

where S is the average relative slip. In integral form this is

M (2)

2|

S =
o
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Since the average slip is proportional to the square root of the
8lip area A it follows that

2M
A-Aoe

The frequency distribution of earthquskes given by equation (1)
states that the relative frequencies are inversely proportional to the
area A so the frequency distribution of shocks in terms of M 1s

£ = ce M (3)

Equation (3) may be compared with recorded data on frequency of
occurrence of earthquakes. Such data have been presented by Gutenberg
and Richﬂt:er2 who give the observed frequencies of shallow focus world
earthquakes, Southern California earthquakes and New Zealand earthquakes
as

log, N =a +b (8 - M) (3a)
where N is the mean annual number per tenth magnitude, M is the magni-
tude of a shock as defined by Richter, and the coefficient b is 0.9, 0.88,
0.87 respectively. These values were obtained by plotting log N against
M and fitting a straight line to the data. The points fitted the line
closely except for magnitudes greater than 8 in which range the observed
frequencies fell below the line with an apparent upper limit for M of 8.7.
If the preceeding equation is put in exponential form there is obtained
for world earthquakes, Southern California earthquakes and New Zealand
earthquakes, respectively,

N =c e20M

1
N = cz e‘z.om
N = c3 e-Z.OOM

It is seen that equation (3) fits the data within the limits of observa-
tional accuracy.

2 B. Gutenberg and C. F. Richter, Seismicity of the Earth, Princeton

University Press, 1949.
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It is also seen from the foregoing that the measure of an earth-
quake as defined in this paper may be identified with the magnitude de-
fined by Richter. -He defined the magnitude as being the logarithm of the
maximum trace amplitude recorded by a certain type of seismograph located
100 kilometers from the epicenter of an earthquake. It will be shown
later that the wmaximum trace amplitude is proportional to the square root
of the area of slip so that the two definitions are the same.

ENERGY RELFASED

The strailn energy stored in a solid by a single shear dislocation
is equal to the work that must be expended by the shear stresses acting
on the faces of the dislocation in producing the relative displacement of
the faces. The strain energy stored by a dislocation of area a, is thus

1
En T2 / 7;1 Sn dB‘n
where ‘Tn is the shear stress acting on the face and Sn is the relative
displacement (variable) of the two faces. The failing stress | is the
same for all dislocations, so if §n and En are the average slip and average
area the total energy released by N dislocations is
N —— — -
E = Z_ E =7c,T§ a =0n

n

The total energy released is thus proportional to the number N of
dislocations released. The number N is proportional to the area of slip
multiplied by the average slip, over A, so

C.AS

E=¢

or

E=C (:3M (%)

This relates the energy released to the magnitude of the shock.

Equation (4) applies only to geometrically similar slip areas.
For example, a small slip area will have longitudinél and vertical dimensions
approximately equal and increasingly larger slip areas will be geometrically
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similar to this up to a certain point. The vertical dimensions of slip
areas are limited in that a slip originating at a 10 mile depth can ex-
tend upward only 10 miles, and because of the changing physical proper-
ties of the earth's crust with depth, the slip 1s limited in the downward
direction also. This means that the slip areas of very large earthquakes
increase principally by an elongation of the area and that the vertical
dimension of the slip area does not increase proportionally. Such slip
areas are not geoetrically similar to the smaller slip areas and this
must be taken into account when computing the energy released. For
geometrically similar slip curves the average slip is proportional to
the length of the fault. For the smaller shocks this varies as

S=c' Ja

However, for very large geometrically similar shocks where the slip area
receives no restraint from material above or below, the length is propor-
tional to the area, so that

S=Cc"A
In this case the total energy must be written
E=Ce1‘M (ka)

There is, of course, a transition region between the limits of applicabil-
ity of equations (4) and (4a), and the latter presumsbly applies only to
very large shocks. .

The foregoing expressions for energy released may be compared
with those derived by an alternate method by Gutenberg and Richter3.
Consider that at the epicenter the radiated energy arrives in a sinusoidal
wave train with maximum acceleration a, and duration to, that is, consider
the actual accelerogram to be replaced by an equivalent sinusoidal wave
train. Assuming the total energy released to be proportional to the
energy reaching the epicenter will then give

2

E=C to a,

vhere a, is the maximum acceleration at the epicenter. From the recorded

3 B. Gutenberg and C. F. Richter, Earthquake Magnitude, Energy, Intensity
and Acceleration, Bull. Seism. Soc. Amer., Vol. 32, No.3, 1942,
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ground accelerations it is found that the following empirical expression
relates 8, with M

M=2,2+1.8 log,, &,

or

o = ol-20M
o 1

As shown below, the duration may be taken to be

These values glve for the energy released

E = ¢ e3OtM (he)

vhich agrees with equation (L).

The foregoing analysis does not include the energy carried in
the long period components that are found in very large shocks. To allow
for this Gutenberg and Richter apply the correction factor eM thus obtain-
ing

L. o6M

E=Ce" (ka)

which agrees with equation (4b).

AREAS OF SLIP

According to the dislocation theory the total area of relative
slip along a fault is proportional to the square of the maximum slip. In
terms of the wmagnitude the area of slip is thus

A=a ™ 1)

This expression should be understood in a probability sense, namely, that
on the average shocks of magnitude M will have an area A corresponding to
equation (7). As was seen when discussing equation (1) there must be an
upper limit for the area A and also a lower limit. The lower limit is the
area of the smallest individual shear dislocation that can be released
under the conditions applying to an earthquake fault; the upper limit is
imposed by the fact that earthquake faults are of finite extent.
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The areas corresponding to different values of M can be cowmpared
by means of equation (7), for example

A 204y Mp) (8)

A
To investigate the implicztions of this equation let the shock of El
Centro, 18 May 1940 be considered a typical 6.7 magnitude earthquake.
Judging from the visible surface slip it is estimated that this shock had
a slip area of approximately 40 x 20 = 800 square miles. Using this as a
base, the areas of shocks of other magnitudes are given by

A = 800 ez(l_6°7)

This gives for a shock of magnitude M = O, an area of slip,
Ao = 0.0012 8q. miles

which is equivalent to a circular area of 210 feet diameter. L As will be
seen later, from an analysis of strong motion records it appears that an
area of this order of magnitude is the lower limit in area of slippage.
The relative slip associated with an area of 210 feet diameter may be
estimated as follows. The average slip varies with magnitude according
to equation (2). For geometrically similar shocks the maximum relative
slip is given by the same expression, that is,

S=8 eM
o

The maximum surface slip of the E1l Centro shock was approximately 15 feet
and if the maximm sub-surface slip for a 6.7 magnitude that is the upper

bound of a range of geometrically similar shocks is taken to be the same,
the slip for shocks of smaller magnitudes is given by

s = 15 &(M-6:T) (9)

For M = O this gives a maximum slip of 0.25 inches. This indicates that
the typical smallest dislocation is one of area corresponding to appraxim-
ately 210 feet in diameter with a maximm relative slip between faces of
0.25 inches.

If the preceding equations are applied to a shock of 8.2 magni-
tude, such as the 1906 San Francisco earthquake, there is obtained a ‘
total area of slip equal t0 300 x 55 miles. The surface slip of the 1906
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shock disappeared into the ocean north of San Francisco but it appears
that the total slip area was of the order of magnitude of the above men-
tioned figure.

The total movement in California can be estimated by means of
the foregoing equations. If the mean annual frequency distribution of
shocks in California i1s taken to be the same per unit area as for South-
ern Ca.l:l:t‘ornj.a.2 there is obtained

£ = 0.00086 &2(8-7-4)
The area of slip per shock according to the preceding calculation is:
A = 0.0012 e gq. miles

The average relative slip over’ the area is approximated by one-half the
maximum slip, or

S = % (0.25) e inches.

The total mean annual slipping is given by the integral of (fAS) and if
this is assumed to be distributed uniformly over faults 30 miles deep and
T00 miles long there is obtained for the mean annual relastive shearing
motion of the east and west boundaries of the state

8.
[ ! (0.00086)(0.0012)%(0,25) Q176 M
(30)(700) dM = 2.2 inches per year

o}

This may be compared with the estimate of a mean annual relative motion
of approximately 2 inches per year that is based on triangulation surveys.

The average duration of the strong motion at the epicenter can
be .estimated from the motion of a point along the fault. Since such an
element of material undergoes a displacement it must be subjected to a
force that accelerates and decelerates. If the motion is caused by
successive releases of dislocations the force is similar for earthquakes
of various magnitudes, differing only in duration. Thus the motion of
the point can be written
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2
2—2— = F(kt)
at

T e
g‘_;= [F(kt)dt=-ll; [lF(e)do (kt = 8)

o (e}
0 9 \ ]
g =X 1 F(6)do, a6 = &=
K2 / K2
(o] (o]
s=c—2 G
o
1
from which /
M/2
T=c Y5 =c,e

where S 1s the maximum slip. The duration estimated from seismograms by
Gutenberg and Richter3 is

- at Wb
log), t, = at

or
i, = oo W93

The foregoing values of slip areas, etc., are not exact but are
only approximations that are used to show that the formulas give reason-
able values when applied to the limits of their ranges and that they are
consistent with observations.

ACCELEROGRAMS DERIVED FROM DISLOCATIONS

When the dislocations are released along a fault area they
radiate stress pulses and it must be shown that these pulses can form
accelerations that agree with those recorded at the surface of the ground.
To show this 1t will be assumed that the release of dislocations sends
out elemental shocks that record as one cycle of a sine wave. It is not
essential that the pulse be exactly one cycle of a sine wave; this is only
a computational convenience. However, it is essential that the pulse be
double looped for it will be shown that it is not possible to form a
typical accelerogram with single looped pulses such as one-half cycle of
a sine wave. It is also necessary that the swarm of pulses have va.r:lrous
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wave lengths for it is not possible to form an accelerogram with the
properties of recorded accelerograms with a swarm of pulses all of the
same wave length. As will be seen, the pulses required are predomin-
antly of 2/10 second wave length and the shortest wave length appears
to be something of the order of 1/30 of a second. At a propagation
velocity of }0,000 feet per second a time of 1/30 second corresponds
to a distance of 330 feet so that the size of the smallest dislocation
appears to be of this order of magnitude.

It is assumed that during an earthquake the dislocations are
released over the slip area at random times so that the motion recorded
by an accelerometer is composed of a swarm of pulses random in time. To
determine the required distribution of pulse wave lengths and amplitudes
the following method of analysis is used. A recorded accelerogram is
considered to be a random continuous function and an earthquake is con-
sidered to be a random sample from & parent population. The character-
istics of a random continuous function (accelerogram) are exhibited by
its energy spectrum. The spectra have been computed for recorded strong-
motion accelerograms and the average of these spectra is taken to be
the spectrum of the parent population of strong-motion earthquakes.

The distribution of pulse wave lengths, amplitudes and numbers is de-
termined so that the spectrum of the parent population of pulses is the
same as the above-mentlioned average recorded earthquake spectrum.

Consider a swarm of pulses, every one of which is represented
by the acceleration

2
k

vhere the times of occurrence © are randomly distributed over an inter-

£(t, ©) = sink(t-0) (0 -F<t<o+)

val of time. If a certain number n, of such pulses are superimposed at
random they will form an accelerogram whose energy spectrum is given by

F(k,v) = ([z;1 £(t,k,0,) sinvt at)? + ([?1 £(t,k,0_)cos vt at)?

This will, in general, be an irregular curve, but the average of a large
number of spectra from different, sets of n pulses will approach a smcoth
curve that characterjses the population from which the pulses were taken.



0°¢

sasTng xoF vagoadgs °g *I1d

1/2°0 = I POTJ d

62 o2 S°1

L4 v L

-l
Furs




2l.

To compute the average spectrum it 1s only necessary to integrate the
foregoing expression with respect to 8, since the probability of @ is
constant with respect to time. When this is done there is obtained for

the average spectrum

2
in n =
n g ¥
F(k,» ) =2 (——Tz—)
k 1- (E)
or 2
Jt
sin =
F(k,v) = 2 (—Tr- (10)
k le =
2
r

vhere r is the ratio of the wave length being considered on the spectrum
to the wave length of the pulses. This is shown in Figure 6, where the
square root of the spectrum is drawn. In the case of one-half sine
pulses, that is, single loop pulses, the average spectrum is

P
cos =
2
Flk, v) = _277 _Té'_ | (11)
k 1- ;i

The square root of this curve is drawn also in Figure 6. These curves
are typical in that the double looped pulses produce a humped curve, where-
as the single loop pulses do not.

If an accelerogrem is formed by the random superposition of pulses
of a variety of wave lengths and amplitudes, the mathematical expectation of
the spectrum is

2
1/2 x
n in =

Fk,w) = (kk % f i ) (12)
"z

vhere '))k dk is the number of pulses, in the population, having wave lengths
lying between k and k + dk, and Ak is the amplitude of the pulse.

A typical earthquake spectrum is shown in Figure 7. The spectrum
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shown 1s actually the square root of the energy spectrumh. When the com-
puted curves for the two components of the El Centro 18 May 1940, El Centro
30 December 1934, and Olympia, Washington 13 April 1949 strong motion
accelerograms are averaged there is obtained a fairly smooth curve that is
closely approximated by the curve shown in Figure 8. The averaging in this
case was preceded by changing scales so that all of the individual spectra
had the same average ordinate. The curve of Figure 8 is taken to be the
square root of the average energy spectrum. It is seen that the average
spectrum has & hump and therefore cannot be derived from single loop pulses.
It can, however, be derived from double loop pulses. When equation (12) 1is
nl/z
k

» ) are determined,

and these are shown in Figure 9. Since the numbers 'ni/ 2
tudes Ak occur as a product it is impossible to distinguish their separate
effects on the spectrum, for quadrupling the number has the same effect as
doubling the amplitude of the pulses. If, for example, the relative numbers

are taken to be inversely proportional to the square of their wave lengths

that is, hk = k2 , the curve of Figure 9 is a graph of the actual ampli-

tude distribution of the pulses. On the other hand, if Ak is taken to be

fitted to the curve of Figure 8 the values of(

and the ampli-

1/2
the same for all pulses, the curve of Figure 9 shows the values of 1‘;—- .

The parent population of pulses may thus be considered to be
composed of pulses of various wave lengths, having the . amplitudes
and numbers as given by Figure 9. If a random sample of M of such pulses
is taken and the sample is distributed at random over an interval of time
an accelerogram will be formed. The average spectrum of a large n@ber of

* The random nature of earthquake ground motion was first pointed out in

Characteristics of Strong-Motion Earthquakes, Bull. Seism. Soc. Amer.
(1947) Vol.37. The spectra presented there were computed by means of
a torsion pendulum that was later discovered to have approximately 0.0l
of critital damping which was sufficient to eliminate the hump in the
average spectrum curve and reduce it to a horizontal line. Details of
spectrum calculation will be found in J. L. Alford, G. W. Housner and
R. R. Martel, Spectrum Analysis of Strong-Motion Earthquakes, Office of
Raval Research Report, Contract N6onr-2ilh, California Institute of
Technology, August 1951. )
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accelerograms obtained in this way will approach the spectrum of Figure 8.
A sample accelerogram obtained in this way will thus have the characteris-
tics of actual recorded accelerograms in so far as these are random con-
tinuous functions.

A sample accelerogram was constructed by distributing 584 pulses
over a 10 second interval, allotting 292 to each 5 second interval. To
simplify the computations, the numbers and amplitudes of pulses were taken

1/2
as shown in the following table so that the proper ( n Ak ) was
k

obtained, and these were distributed at random by weans of a table of ran-
dom numbers. This procedure will give a somewhat more uniform looking
accelerogram than would be obtained if the pulses had been selected at
random from the population and distributed at random over a 10 second
period.

Wave Length Number Amplitude
0.1 200 5.0
0.2 100 11.0
0.3 66 4.0
0.k 50 1.5
0.5 ko 1.0
0.6 33 0.58
0.7 28 0.37
0.8 25 0.25
0.9 22 0.17
1.0 20 0.12

The resulting accelerogram is shown in Figure 10. For comparison there is
shown a portion of the Olympia, Washington accelerogram in Figure 11. It
is seen that the two are very similar in appearance even to the extent that
on the average they cross the axis the same number of times per second.

It should be noted that the preceding method of superposing the
pulses actually corresponds to the time of strong motion omly, that is,
vhen very large numbers of pulses are arriving. The earlier and later
portions of recorded accelerograms usually show wmany fewer pulses arriving.
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Fig. 11. Portion of Olympia, Washington Accelerogram
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MAXTMUM ACCELERATIONS

When an accelerogram is constructed with a set of pulses in the
foregoing manner it is found that, to a considerable degree, the pulses
cancel each other and that the maximum sccelerations are the result of
fortuituous superpositions of pulses. If a second accelerogram is con-
structed using the same set of pulses it will differ from the first be-
cause of the random superposition of the pulses. However, if a large
number of accelerograms are constructed using the same set of pulses
they will have certain average properties, for example, there will be
an average maximum acceleration and the maximum accelerations of the
individual accelerograms will deviate from the average with a certain
statistical distribution. In what follows, the references to accelera-
tions are to the average properties.

When the average energy spectrum is calculasted for a given dis-
tribution of pulses its ordinates, as shown by equation (12), are pro-
portional to (nAz), where n 1s the number of pulses and A is the ampli-
tude. On the other hand, i1f accelerograms are constructed from the
pulses and the spectra computed for these, the average spectrum will
have ordinates proportional to the square of the maximum acceleration
Therefore, the maximum acceleration ol 1is proportiocnal to the ampli-
tude of the pulses and to the square root of the number of pulses, that
is, 1
ol =K(n)z A
where the number n is the pulse density at the point where the accel-
erations are measured, that is, the number of pulses per unit time.

If an increment of fault area dx dh is radiating pulses at a rate n per
unit area, the maximum acceleration at a specified point on the surface
of the gound will have a maximm acceleration

1
ol =K(ndxdn)2 A (13)

If the point on the surface of the ground 1s sufficlently far from the
fault so that the radiation can be considered to come. from a point source
the maximum acceleration recorded will be the cumulative acceleration
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from the total srea that is radiating, that is
2= [f m? ax an (1k)
If the radiatiorn is the same from all points on the fault area the maxi-

mum acceleration will be
1
o(=CA(N)§
where N is the rate of pulse radiation of the entire fault area, N is
directly proportional +to the area, so the maximum acceleration o is pro- |
portional to the square root of the fault area. In terms of the magnitude

M
o = Cl €

This is essentially Richter's definition of magnitude,in terms of acceler-

ation instead of displacement)which is thus a measure of the areas of slip.
For points relatively close to the fault, it is not correct to

assume point source radiation but the area of the fault must be taken into

account, A qualitative investigation of this effect may be made as follows.

Consider a fault of length 2,? and vertical dimension ho’ each point of

which is radiating pulses according to equation (13). Furthermore, let

the effect of the position of the point on the surface of the ground,

where the accelerations are measured, relative to the point on the fault

be described by the inverse square law with cosine correction as given by

Gutenberg and Richters, that is

1
,,(:K(ndxah)EAzhz 5 (16)
X +y +h

where x, y, h are the coordinates of the point on the surface of the ground
with respect to the radiating point. The effect of the radiation from the
fault area can be approximated by considering the radiation from a line of
length 2 £ at an equivalent depth h if the strength of the radiation is

5 B. Gutenberg and C. F. Richter, Earthquake Magnitude, Energy, Intensity
and Acceleration, Bull. Seism. Soc. Amer., Vol.32, No.3, 1942.
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taken to be proportional to ho «» If, then, the maximum acceleration
is calculated for the line in accordance with equations (14%) and (15)
there is obtained

3 1 1
oo NPy {@uxﬁw%ﬁ_(»nmﬁflf
(o) 2enPay? (xep)BenPay?

oo)

+ tan~t x+® - tan™t x -4 (17)
h+y h™+y

vhere x, y, h are the coordinates of the point on the surface of the
ground as measured in a coordinate system w.ith origin at the center of
the line, x and y being respectively parellel and perpendicular to the
line and h being the vertical distance from the center of the line to
the surface of the ground. ZXquation (17) describes the variation gf
seismicity over the surface of the ground. When £<0 with ( c(ojﬁ )

constant, there is obtained for point source radiation
1
2 h
oL = (L (b K) (18)

( x2 +y2+h2 )

which agrees with equation (15).

According to equation (12), A=¢ eM and according to equation

(4) the energy released is E = C, eM so lo( is proportional to the cube
root of the energy and equation (18) can be written
1
o = C(B) ° 55— (18a)
x +y +h

The same equation is derived by Gutenberg and Richter3 by using empirical
equations based on observations.

According to equation (17), if 2,? is smaller than
approximately 0.20 the fault may be consiae;Xd to be a point source but
if the accelerations are measured closer to the fault than this, the effect
of the dimensions of the fault must be taken into account. For example,
consider a point directly above the center of the fault at x =0, y = 0. °
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Equation (17) is then

= 1l
h \2 -
. 0 1 -1 £ )z .
oL = &, <2h) (_h—--}—+ ) +tan " (19)
y h
ie less than 0.2 equation (19) can be written

((e)* (%)°

and the radiation may be congidered as originating from a point source.

On the other hand, when _{ becomes greater than this the effect of the
increased length of fault upon the maximum accelerations rapidly decreases
as shown in the table. It is seen that ol calculsted from equation (19)
is virtually unaffected by increase in ,f beyond Jyh‘= 1.2, so that an
earthquake such as that of El Centro, 1940, for which ,f was approximately
20 miles and the equivalent h perhaps 10 miles, the maximum accelerations
in the vicinity of the center of the fault would not have been materially
increased for an ,e of 4O or more miles. Thus, as regards the effect of
area of slip, the maximum accelerations associated with the El Centro
shock are close to the maximum possible.

When

Dlde

'—l
=

1
P _et_(_zf) 2
L % B
0 0
.2 .62
h .85
.6 .99
. 1.08
R 1.13
2 1.17
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SUMMARY

The dislocation .theory considers that an earthquake fault is
formed by the superposition of a large number of incremental shear dis-
locations whose sudden release produces the earthquake. It is postu-
lated that during an earthquake the incremental dislocations are re-
leased in such a way that the average slip is proportional to the square
root of the area of slip, and that the probability of release of indivi-
dual incremental dislocations is such that the probability of a total
slip area A is inversely proportional to A. With these two postulates
a frequency distribution of earthquakes is derived that agrees with
observed data within the limits of accuracy of the data; the Richter
magnitude is shown to be essentially a logarithmic measure of the
average slip on a fault; and an expression is derived for the energy
released by an earthquake that agrees with that derived from considera-
tion of the energy carried in a wave train. Expressions are derived
also for the areas of slip during earthquakes, the maximum relative
slip, and the average annual, overall shearing distortion of the State
of Californla and these are in satisfactory agreement with observed
behavior. According to the theory, during an earthquake a large number
of incremental dislocations are released, each of which produces an
elemental acceleration pulse. An accelerogram is thus formed by the
superposition of a large number of elemental acceleration pulses ran-
dom in time. It is shown that this agrees with recorded accelerograms
and an accelerogram composed in this fashion is shown to have the
characteristics of actual recorded accelerograms. It 1s also shown
that the maximum ground accelerations in the vicinity of the center of
the fault, in so far as they are dependent upon the size of the slip
area, have essentially reached their upper limits for shocks with areas
of slip approximately equal to that associated with the El Centro, 1940
earthquake.

The fact that there is good agreement between the theory and
observations increases confidence that the relatively small number of
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recorded strong ground motions are typical of the motions to be expected.
For if shocks are generated by the release of dislocations, the ground
wotions must always be similar to the past recorded ground wotions, that
is, the energy spectra of the ground motion must be similar, for any
radical departure would require a marked difference in the physical

properties of the earth's crust.



